Esc4p, a new target of Mec1p (ATR), promotes resumption of DNA synthesis after DNA damage.

نویسنده

  • John Rouse
چکیده

The DNA damage-responsive protein kinases ATM and ATR phosphorylate SQ/TQ motifs that lie in clusters in most of their in vivo targets. Budding yeast Esc4p contains a cluster of SQ/TQ motifs, suggesting that it might be a target of Mec1p/Tel1p (yeast ATR/ATM). Here it is reported that Esc4p is phosphorylated by Mec1p in response to DNA damage during DNA replication and that cells lacking Esc4p are hypersensitive to DNA damage specifically during S phase. Esc4p is not required for the intra-S-phase checkpoint but is essential for resumption of chromosome replication after DNA damage, and its role in promoting restart appears to be distinct from that of Rad53p. Mutation of Esc4p SQ/TQ motifs phosphorylated by Mec1p or mutation of the BRCT domains of Esc4p also renders cells unable to restart DNA replication after DNA damage and causes hypersensitivity to genotoxins. These results identify Esc4p as an important new S-phase-specific target of Mec1p.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation

The DNA damage-responsive protein kinases ATM and ATR phosphorylate SQ/TQ motifs that lie in clusters in most of their in vivo targets. Budding yeast Cdc13p contains two clusters of SQ/TQ motifs, suggesting that it might be a target of Mec1p/Tel1p (yeast ATR/ATM). Here we demonstrated that the telomerase recruitment domain of Cdc13p is phosphorylated by Mec1p and Tel1p. Gel analysis showed that...

متن کامل

Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p.

Eukaryotic cells respond to DNA damage by arresting the cell cycle and modulating gene expression to ensure efficient DNA repair. The human ATR kinase and its homolog in yeast, MEC1, play central roles in transducing the damage signal. To characterize the role of the Mec1 pathway in modulating the cellular response to DNA damage, we used DNA microarrays to observe genomic expression in Saccharo...

متن کامل

Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p.

Checkpoints prevent DNA replication or nuclear division when chromosomes are damaged. The Saccharomyces cerevisiae DDC1 gene belongs to the RAD17, MEC3 and RAD24 epistasis group which, together with RAD9, is proposed to act at the beginning of the DNA damage checkpoint pathway. Ddc1p is periodically phosphorylated during unperturbed cell cycle and hyperphosphorylated in response to DNA damage. ...

متن کامل

Atrazine in sub-acute exposure results in sperm DNA disintegrity and nuclear immaturity in rats

This study was designed to evaluate the detrimental effect of atrazine (ATR) on germinal epitheliums (GE) cytoplasmic carbohydrate (CH) and unsaturated fatty acids (UFA) ratio and to clarify the effect of ATR on serum levels of FSH, LH, testosterone and inhibin-B (INH-B). The impact of ATR exposure on total antioxidant capacity (TAC), sperm DNA packing and integrity were also investigated. Seve...

متن کامل

ATR phosphorylates SMARCAL1 to prevent replication fork collapse.

The DNA damage response kinase ataxia telangiectasia and Rad3-related (ATR) coordinates much of the cellular response to replication stress. The exact mechanisms by which ATR regulates DNA synthesis in conditions of replication stress are largely unknown, but this activity is critical for the viability and proliferation of cancer cells, making ATR a potential therapeutic target. Here we use sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2004